Engineering Science Data Booklet

Higher

For use in National Qualification Courses
leading to the 2015 examinations and beyond.

Publication date: 2015
Publication code: BB6754
ISBN: 9781910180013
Published by the Scottish Qualifications Authority
The Optima Building, 58 Robertson Street, Glasgow G2 8DQ
Lowden, 24 Wester Shawfair, Dalkeith, Midlothian EH22 1FD
www.sqa.org.uk

The information in this publication may be reproduced in support of SQA qualifications. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, then written permission must be obtained from SQA. It must not be reproduced for trade or commercial purposes.

For an up-to-date list of prices visit the Publication Sales and Downloads section of SQA's website. For further details telephone SQA's Customer Contact Centre on 08452791000.

Contents

Preface 3
Quantities, symbols and units 4
Decimal prefixes 5
Energy and power formulae 5
Mechanisms 5
Pneumatic Systems 6
Structures 6
Properties of materials. 6
Electrical and electronic formulae 7
Transistors 7
Typical operational amplifier circuits 8-10

Preface

This data booklet is intended for use by candidates in examinations in Engineering Science at Higher. It may also be used as a reference for assignments at Higher. It is recommended that candidates should become familiar with the contents of the data booklet through use in undertaking Units of these Courses.

It should be noted that the range of data contained in the booklet has been limited to the concepts which may be assessed through written question papers. This range should be supplemented by other resource material as necessary during the course, eg by using data sheets. However, should any additional information (or data not included in this booklet) be required in an examination, such information will be included in the question paper.

Teachers/lecturers should note that all of the material contained in this booklet is likely to be examined at some time. With regard to tables of information, not every entry in a table will necessarily be involved in examination questions.

From the variety of data offered in this booklet, candidates will be expected to demonstrate the ability to select appropriate information or formulae.

Quantities, Symbols and Units

Quantity	Symbol	Unit	Abbreviation
distance	d,x	metre	m
height	h	metre	m
length	1	metre	m
diameter	d	metre	m
radius	r	metre	m
area	A	square metre	m^{2}
circumference	C	metre	m
time	t	second	s
speed, velocity	v	metre per second	ms^{-1}
mass	m	kilogram	kg
force	F	newton	N
gravitational acceleration	g	metre per second per second	ms^{-2}
work done	E_{w}	joule	J
energy	E	joule	J
power	P	watt	W
torque	T	newton metre	Nm
efficiency	η	-	-
pressure	P	newton per square metre (pascal)	$\mathrm{Nm}^{-2}(\mathrm{~Pa})$
temperature	T	kelvin, celsius	K, ${ }^{\circ} \mathrm{C}$
specific heat capacity	c	joule per kilogram per degree kelvin	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
voltage, potential difference	V	volt	V
current	I	ampere (amp)	A
resistance	R	ohm	Ω
frequency	f	hertz	Hz
rotational speed	n	revolutions per minute	revs min^{-1}
		revolutions per second	revs sec ${ }^{-1}$
stress	σ	newton per square metre (pascal)	$\mathrm{Nm}^{-2}(\mathrm{~Pa})$
strain	ϵ	-	-

Decimal Prefixes

Prefix	Symbol	Multiplying factor
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Relationships

Energy and power

Potential energy	$E_{p}=m g h$	$\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ (to 2 significant figures)
Kinetic energy	$E_{k}=1 / 2 m v^{2}$	
Heat energy	$E_{h}=c m \Delta T$	$C_{\text {water }}=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ (to 2 significant figures)
Electrical energy	$\mathrm{E}_{\mathrm{e}}=\mathrm{VII}$	
Work done	$\mathrm{E}_{\mathrm{w}}=\mathrm{Fd}$	
Power	$P=\frac{E}{t}$	
Electrical power	$\mathrm{P}=\mathrm{VI}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=I^{2} \mathrm{R}$	
Mechanical power	$\mathrm{P}=\mathrm{Fv}$	$P=2 \pi n T$ ($n=$ no of revs per second)
Efficiency	$\eta=\frac{\text { Energy }_{\text {out }}}{\text { Energy }_{\text {in }}}=$	$\frac{r_{\text {out }}}{e_{\text {in }}}$

Mechanisms

Velocity ratio

Torque
Circumference of circle
Moment of force
Principle of moments

Conditions of equilibrium
$V R=\frac{\text { speed of input }}{\text { speed of output }}$
Input speed x input size $=$ output speed x output size
$\mathrm{T}=\mathrm{Fr}$
$C=\pi d$
$M=\mathrm{Fx} \quad$ (x is perpendicular distance)
$\Sigma M=0$
Σ clockwise moments $=\Sigma$ anti-clockwise moments
$\Sigma \mathrm{F}_{\mathrm{h}}=0$
$\Sigma F_{V}=0$
$\Sigma M=0$

Pneumatic Systems

Pressure, force and area	$P=\frac{F}{A}$
Area of circle	$A=\pi r^{2} \quad A=\frac{\pi d^{2}}{4}$
	$\pi=3.14$ (to 3 significant figures)

Structures

Stress

$$
\sigma=\frac{F}{A}
$$

Strain $\epsilon=\frac{\Delta l}{l}$

Strain energy
$E_{s}=\frac{1}{2} F_{x}$

Young's Modulus

Factor of Safety
$E=\frac{\sigma}{\epsilon}$
$=\frac{\text { ultimate load }}{\text { safe working load }}=\frac{\text { ultimate stress }}{\text { safe working stress }}$

Properties of materials

Material	Young's Modulus \mathbf{E} kNm	Yield stress σ_{γ} $\mathbf{N m m}^{-2}$	Ultimate tensile stress $\mathbf{N m m}^{-2}$	Ultimate compressive stress $\mathbf{N m m}^{-2}$
Mild steel	196	220	430	430
Stainless steels	$190-200$	$286-500$	$760-1280$	$460-540$
Low-alloy steels	$200-207$	$500-1980$	$680-2400$	$680-2400$
Cast iron	120	-	$120-160$	$600-900$
Aluminium alloy	70	250	300	300
Titanium alloy	110	950	1000	1000
Nickel alloys	$130-234$	$200-1600$	$400-2000$	$400-2000$
Concrete	-	-	-	60
Concrete (steel reinforced)	$45-50$	-	-	100
Concrete (post stressed)	-	-	-	100
Plastic, ABS polycarbonate	$2 \cdot 6$	55	60	85
Plastic, polypropylene	$0 \cdot 9$	$19-36$	$33-36$	70
Wood, parallel to grain	$9-16$	-	$55-100$	$6-16$
Wood, perpendicular to grain	$0 \cdot 6-1 \cdot 0$	-	-	$2-6$

Electrical and electronic

Ohm's Law

Resistors in series

Resistors in parallel

2 resistors in parallel

Kirchhoff's 1st law

Kirchhoff's 2nd law

Voltage Divider

Electrical power
$V=I R$
$R_{t}=R_{1}+R_{2}+R_{3}+\ldots .$.
$\frac{1}{R_{t}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$.
$R_{t}=\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)}$
$\Sigma \mathrm{I}=0$ (algebraic sum of currents at a node is zero)
$\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}$
(algebraic sum of supply voltages = sum of voltage-drops, in a closed loop)
$\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$
$\mathrm{P}=\mathrm{VI}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=I^{2} \mathrm{R}$

Transistors

Bi-polar transistor gain
$h_{\text {FE }}=I_{c} / I_{b}$
MOSFET transconductance

MOSFET Characteristics Curves

Typical operational amplifier circuits

$\mathrm{V}_{\mathrm{o}}=$ output voltage
$\mathrm{V}_{\mathrm{i}}=$ input voltage
$\mathrm{V}_{\mathrm{cc}}=$ supply voltage
$R_{f}=$ feedback resistance
$\mathrm{R}_{\mathrm{i}}=$ input resistance
$A_{v}=$ gain $=\frac{\text { output voltage }}{\text { input voltage }}$

Note : Op-amp output saturates at 85% of $\mathrm{V}_{\text {cc }}$

Inverting

$A_{v}=\frac{V_{0}}{V_{i}}$
$A_{v}=-\frac{R_{f}}{R_{i}}$
$V_{o}=-\frac{R_{f}}{R_{i}} V_{i}$

Non-inverting

$$
A_{v}=\frac{V_{0}}{V_{i}} \quad A_{v}=1+\frac{R_{f}}{R_{i}} \quad V_{o}=\left(1+\frac{R_{f}}{R_{i}}\right) V_{i}
$$

Comparator

If $\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\text {ref }}$, then V_{0} saturates positively (85% of $+\mathrm{V}_{\text {cc }}$)
If $\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\text {ref }}$, then V_{0} saturates negatively (85% of $-\mathrm{V}_{\mathrm{cc}}$)

Difference Amplifier

$A_{v}=\frac{V_{0}}{\left(V_{2}-V_{1}\right)}$
$A_{v}=\frac{R_{f}}{R_{i}}$
$V_{0}=\frac{R_{f}}{R_{i}}\left(V_{2}-V_{1}\right)$

Summing Amplifier

$$
\begin{aligned}
& A_{v 1}=-\frac{R_{f}}{R_{1}} \quad A_{v 2}=-\frac{R_{f}}{R_{2}} \quad A_{v n}=-\frac{R_{f}}{R_{n}} \\
& V_{o}=\left(A_{v 1} V_{1}\right)+\left(A_{v 2} V_{2}\right)+\ldots \\
& V_{o}=-R_{f}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\ldots\right)
\end{aligned}
$$

Voltage Follower

[END OF DATA BOOKLET]

